A New Approach to TOF Mass Spectrometry for High Performance MS and MS-MS

Marvin Vestal and Kevin Hayden SimulTOF Systems AKA Virgin Instruments Corp. Sudbury, MA 01776

Presented at 60th ASMS Conference on Mass Spectrometry May 21, 2012

Elements of TOF Analyzer

- Ion production
 - MALDI
- Time focusing to reduce effect of initial position and initial velocity
 - Delayed extraction
 - Simultaneous space and velocity focusing (SimulTOF)
- Ion optics for efficient ion transmission of ions of interest and mass gate and filtering to remove ion noise
- Detector for efficient detection of broad range of masses with fast response

Elements of TOF Analyzer

- Ion production
 - MALDI 5 kHz operation
- Time focusing to reduce effect of initial position and initial velocity
 - Delayed extraction
 - Simultaneous space and velocity focusing (SimulTOF)
- Ion optics for efficient ion transmission of ions of interest and mass gate and filtering to remove ion noise
- Detector for efficient detection of broad range of masses with fast response
 - Destroy the myth that high mass singly charged ions cannot be detected by conventional detectors

Note: All data presented are "raw" directly from the digitizer. No data processing, smoothing, or baseline correction has been employed.

Delayed extraction. The distance to the velocity focus D_v is always greater than the distance to the space focus D_s , and if the difference is small the velocity spread $\delta v/v$ is large. As a result it is not possible to obtain high mass resolution over a broad range with a linear analyzer, but refocusing with a two-field mirror can yield high resolution over a broad range.

SimulTOF focusing: The velocity focus D_v is adjusted by varying the amplitude of the accelerating pulse V_p and the space focus D_s by adjusting the voltage ratio y, allowing simultaneous space and velocity focusing to be achieved. Moreover, if D_v is greater than d_1y then the velocity spread is reduced. Thus high resolution over a broad range is possible for a linear analyzer and it provides a preferred first stage for a reflecting analyzer or a tandem TOF-TOF.

SimulTOF Linear @10 kV -- Higher Resolving Power than the old XL Reflector

Photonis detector See Ritzau Poster THP 564 for more info

Potential diagram for linear detector

Typical single ion pulse with fast scintillator

Spectrum of α -cyano matrix dimer measured in SimulTOF 100 Linear MALDI-TOF At 15 kV energy using Photonis fast hybrid detector

Mixture of peptide standards, 100 femtomole/ μ L, 2.5 mm spot Laser spot ca. 50 μ m, fluence 1.3x threshold, 0.4 attomole/spot=240,000 molecules

Mixture of peptide standards, 100 femtomole/ μ L, 2.5 mm spot, 1000 shots as function of laser fluence

Resolving power and peak intensity for 963.5 in α -cyano matrix

Spectrum of BSA in Sinapinic acid matrix measured in SimulTOF 100 Linear MALDI-TOF at 20 kV energy using Photonis fast hybrid detector with channel plate at ground potential

Spectrum of IgG in Sinapinic acid matrix measured in SimulTOF 100 Linear MALDI-TOF at 20 kV energy using Photonis fast hybrid detector with channel plate at ground potential

Spectrum of IgG in Sinapinic acid matrix measured in SimulTOF 100 Linear MALDI-TOF at 20 kV energy using Photonis fast hybrid detector with channel plate at ground potential

200 Combo Reflector Mode, 100 femtomole peptide standards in α -cyano matrix

'ken/toftof2/gasonfocus.job/task=0 (Manual) Acquisition TOFTOFPos-ReflectorMSMS AverageIn1

MS-MS at 100 attomoles/ μ L on 2.5 mm spot. 100,000 shots, 20 s acquisition at 5 kHz 19 of 30 most intense peaks matched neurotensin using Protein Prospector

-

Conclusions

- SimulTOF focusing provides high resolving power over broad range in linear analyzer
- Combination with high performance gridless ion optics and hybrid detector provides very high efficiency for ion transmission and detection for both small molecules and proteins
- Combination with two-stage ion mirror provides resolving power comparable to delayed extraction but with higher sensitivity
- Provides efficient first stage for Tandem TOF with both PSD and CID fragmentation

Acknowledgements

- Financial Support
 - NIGMS and NCRR of NIH
 - Christina Hsieh Vestal and the Hsieh Family
- The entire staff at Virgin Instruments
 - Steve Gabeler, Mark Dahl, Joe Valentine electronics
 - George Mills, Matt Gabeler-Lee software
 - Roger Voyer machinist
 - Steve Hattan, Ken Parker scientists
 - Christina Vestal, Bill Gibbs management